Expression of AtPRP3, a proline-rich structural cell wall protein from Arabidopsis, is regulated by cell-type-specific developmental pathways involved in root hair formation.
نویسندگان
چکیده
The tightly regulated expression patterns of structural cell wall proteins in several plant species indicate that they play a crucial role in determining the extracellular matrix structure for specific cell types. We demonstrate that AtPRP3, a proline-rich cell wall protein in Arabidopsis, is expressed in root-hair-bearing epidermal cells at the root/shoot junction and within the root differentiation zone of light-grown seedlings. Several lines of evidence support a direct relationship between AtPRP3 expression and root hair development. AtPRP3/beta-glucuronidase (GUS) expression increased in roots of transgenic seedlings treated with either 1-aminocyclopropane-1-carboxylic acid (ACC) or alpha-naphthaleneacetic acid (alpha-NAA), compounds known to promote root hair formation. In the presence of 1-alpha-(2-aminoethoxyvinyl)glycine (AVG), an inhibitor of ethylene biosynthesis, AtPRP3/GUS expression was strongly reduced, but could be rescued by co-addition of ACC or alpha-NAA to the growth medium. In addition, AtPRP3/GUS activity was enhanced in ttg and gl2 mutant backgrounds that exhibit ectopic root hairs, but was reduced in rhd6 and 35S-R root-hair-less mutant seedlings. These results indicate that AtPRP3 is regulated by developmental pathways involved in root hair formation, and are consistent with AtPRP3's contributing to cell wall structure in Arabidopsis root hairs.
منابع مشابه
Proline-rich protein-like PRPL1 controls elongation of root hairs in Arabidopsis thaliana.
The synthesis and composition of cell walls is dynamically adapted in response to many developmental and environmental signals. In this respect, cell wall proteins involved in controlling cell elongation are critical for cell development. Transcriptome analysis identified a gene in Arabidopsis thaliana, which was named proline-rich protein-like, AtPRPL1, based on sequence similarities from a ph...
متن کاملCharacterization and expression of four proline-rich cell wall protein genes in Arabidopsis encoding two distinct subsets of multiple domain proteins.
We have characterized the molecular organization and expression of four proline-rich protein genes from Arabidopsis (AtPRPs). These genes predict two classes of cell wall proteins based on DNA sequence identity, repetitive motifs, and domain organization. AtPRP1 and AtPRP3 encode proteins containing an N-terminal PRP-like domain followed by a C-terminal domain that is biased toward P, T, Y, and...
متن کاملArabidopsis thaliana RALF1 opposes brassinosteroid effects on root cell elongation and lateral root formation
Rapid alkalinization factor (RALF) is a peptide signal that plays a basic role in cell biology and most likely regulates cell expansion. In this study, transgenic Arabidopsis thaliana lines with high and low levels of AtRALF1 transcripts were used to investigate this peptide's mechanism of action. Overexpression of the root-specific isoform AtRALF1 resulted in reduced cell size. Conversely, AtR...
متن کاملThe Arabidopsis root hair cell wall formation mutant lrx1 is suppressed by mutations in the RHM1 gene encoding a UDP-L-rhamnose synthase.
Cell and cell wall growth are mutually dependent processes that must be tightly coordinated and controlled. LRR-extensin1 (LRX1) of Arabidopsis thaliana is a potential regulator of cell wall development, consisting of an N-terminal leucine-rich repeat domain and a C-terminal extensin-like domain typical for structural cell wall proteins. LRX1 is expressed in root hairs, and lrx1 mutant plants d...
متن کاملGene transcriptomic profile in arabidopsis thaliana mediated by radiation-induced bystander effects
Background: The in vivo radiation-induced bystander effects (RIBE) at the developmental, genetic, and epigenetic levels have been well demonstrated using model plant Arabidopsis thaliana (A. thaliana). However, the mechanisms underlying RIBE in plants are not clear, especially lacking a comprehensive knowledge about the genes and biological pathways involved in the RIBE in plants. Materials and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Plant physiology
دوره 122 3 شماره
صفحات -
تاریخ انتشار 2000